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Abstract. A systematic approach to customising Homogeneous Multi-Processor
(HoMP) architectures is described. The approach involves a novel design space
exploration tool and a parameterisable system model. Post-fabrication customi-
sation options for using reconfigurable logic with a HoMP are classified. The
adoption of the approach in exploring pre- and post-fabrication customisation op-
tions to optimise an architecture’s critical paths is then described. The approach
and steps are demonstrated using the architecture of a graphics processor. We
also analyse on-chip and off-chip memory access for systems with one or more
processing elements (PEs), and study the impact of the number of threads per PE
on the amount of off-chip memory access and the number of cycles for each out-
put. It is shown that post-fabrication customisation of a graphics processor can
provide up to four times performance improvement for negligible area cost.

1 Introduction

The graphics processor architecture is used to demonstrate a systematic approach to ex-
ploring the customisation of Homogeneous Multi-Processor (HoMP) architectures for
specific application domains. Our approach involves a novel design space exploration
tool with a parameterisable system model.

As motivation for the exploration tool presented here, consider the following pro-
jections from the Tera Device [1] and HiPEAC [2] road maps:

I. Memory bandwidth and processing element (PE) interconnect restrictions ne-
cessitate a revolutionary change in on-chip memory systems [1, 2].

II. It is becoming increasingly important to automate the generation of customis-
able accelerator architectures from a set of high level descriptors [1, 2].

III. Continuing from II, architecture customisation may be applied at the design,
fabrication, computation or runtime stage [1].

The statements above are not mutually exclusive: an answer to statement I may be
a customisation from statement II. It is important to note the following key words.

First customisation, which represents pre-fabrication (pre-fab) and post-fabrication
(post-fab) architectural customisations. Pre-fab customisation is the familiar approach



to determine ‘fixed’ architecture components. Post-fab customisation is a choice of re-
configurable logic (RL) architectural components (hardware), or a programmable in-
struction processor (software), to facilitate in-field modifications. Although we refer to
RL customisations, the work in this paper is also applicable to instruction processors.

Second,high-level descriptors. The increased complexity of the application and
architecture domains, necessitate architectural exploration at a suitably high degree of
abstraction, with a high-level representation of each domain.

Third, a focus oninterconnectandmemory systems. These factors frequent each
road map [1, 2]. It is becoming increasingly challenging to present the required input
data to, and distribute output data from, processing elements.

It is hoped that the exploration tool presented in this paper can be used to explore the
above observations. The aim is to provide significant insight into some of the associated
challenges, faced when designing the exploration process and system model.

The example taken in and focus of this work, is to target the graphics processor
architecture at the video processing application domain. The approach and model are
sufficient to be extended to other architectures and application domains.

The contributions of this work, and the related sections, are as follows:

1. Definition of a classification scheme for the options for post-fab customisation of a
HoMP using RL. The scheme is demonstrated by analysing prior art (Section 3).

2. A systematic design space methodology to explore the customisation options for a
HoMP. The key feature is the notion of pre- and post-fab options (Section 4).

3. The design space options for a HoMP are presented. A system model is described
which implements these options (Section 5).

4. An analysis of the effect of processing pattern on the performance of a model with
a single processing element (PE) and a single execution thread (Section 6).

5. Extension of the above single PE analysis, in contribution 4, to a multiple PE and
multi-threaded example (Section 7).

6. Case studies including decimation and 2D convolution are used to explore the ar-
chitectural trends of graphics processors (Section 8).

7. Proposal and exploration of a graphics processor post-fab customisation motivated
by results from contributions 4 through 6 (Section 9).

In addition to the above, Section 2 discusses related work; Section 10 considers the
impact of our work on other HoMPs; and Section 11 summarises our findings.

This paper is an extended version of [3]. The additional novel contributions to [3]
are 1, 4 and 5. There are also technical enhancements to other contribution areas.

2 Related Work

A popular design space exploration approach is the Y-Chart [4]. The Y-Chart combines
architecture and application models in ‘mapper’ and ‘simulator’ stages to produce per-
formance predictions. In turn, these predictions motivate application and architecture
model modifications. A key strength of the Y-Chart is an iterative update of application
and architectural choice based on a model of system performance [4, 5].



For this work, a standard Y-Chart approach is insufficient. Two issues are as fol-
lows. First, the Y-Chart is too high-level to provide a useful insight into the exploration
process. For a constrained design space, a more detailed description is preferable, as is
shown in Section 5. Second, the choices of architecture features which support the map-
ping of application to architecture should be made more explicit than in the Y-Chart.
To overcome the second issues, a third design space variable of physical mapping is in-
troduced. This is an overlap of the application and architecture design space, and is the
architectural design decisions which support the programming model. For HoMP ar-
chitectures, the programming model is one of the most challenging parts of the design
process. Figure 2(a) is observed to be a suitable adaptation of the Y-Chart approach.

When creating a model for design space exploration one is presented with a tradeoff
between a higher level of abstraction, to broaden the design space, and low level archi-
tectural detail, to make the results meaningful. Related work on architecture models,
Kahn Process Networks and the SystemC library are discussed below.

The following model the low level aspects of the graphics processor architecture.
Moya [6] created a cycle-accurate model of a graphics processor named ATTILA.

Long simulation times prohibit its use for broad design space exploration. Also, the fine
detail of ATTILA limits its scope to prototyping minor architecture modifications.

QSilver [7] is another fine-grained graphics processor architectural model. One ap-
plication is to explore thermal management. QSliver is, similarly to [6], too low-level
for rapid and straight forward design space exploration.

nVidia provide a graphics shader performance model named nvshaderperf [8]. This
is an accurate profile of the computational performance of kernel functions, but provides
no information on memory system performance. In the system model in Section 5,
nvshaderperf is used to estimate computational cycle count for processing elements.

Govindaraju provides a useful estimate of graphics processor memory system cache
arrangement in [9]. For the nVidia GeForce 7800 GTX, Govindaraju estimates cache
block size at8 × 8 pixels, and cache size at128 KBytes. The results follow estimates
by Moya [6] of a16 KByte cache with8 × 8 pixel cache lines for the older GeForce
6800 GT. A small cache size is well suited to graphics rendering.

In Section 5, a model is presented which provides a tradeoff between the fine-detail
in [6, 7], and high-level or feature-specific models in [8, 9]. The advantage of our model
is that architectural modifications can be rapidly prototyped, through modelling [non-
cycle accurate] performance trends. Memory system estimations from [6, 9] are used
for model parametrisation to enable results verification in Section 8.

The interconnects between components of the system model in Figure 4 can be in-
terpreted conceptually as a Kahn Process Network (KPN) [10]. Each processing group
can be thought of as a KPN ‘Process’. The buffer which queues memory accesses be-
tween a processing element (PE) and the memory management unit (MMU) is equiva-
lent to an unbounded KPN ‘channel’. To ensure that the appropriate latencies are simu-
lated in the system model, flags are passed between process nodes (PEs).

The IEEE 1666-2005 SystemC class library is used to implement the abstract trans-
action level model (TLM) of the architecture in Section 5. Related work in [7, 11]
demonstrates the SystemC class library to be a flexible platform for design space ex-
ploration. Specifically, Rissa [11] presents the advantages of SystemC over a register



transfer level (RTL) description, in VHDL or Verilog. A simulation time speedup of
360 to 10, 000 times is achieved by Rissa for SystemC models over RTL descriptions.

For a comprehensive treatment of the SystemC language and transaction level mod-
els the reader is directed to [12].
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Fig. 1. A classification scheme for the post-fabrication customisation options for a HoMP

3 Classification of Customisation Options

In this Section the options for supporting post-fab customisation of a HoMP are clas-
sified. This demonstrates the wider applicability of the exploration tool in Section 4.
The work is motivated by Todman’s hardware-software co-design classification [13],
for a single processor coupled in a classified manner to reconfigurable logic fabric. The
advantageous factors of the customisation options in Figure 1, are as follows.

In contrast to a traditional HoMP architecture, for example a graphics processor,
post-fab customisation enhances an architecture’s flexibility. This makes it adaptable
to a wider variety of application domains. For example, it is shown in [14] that a small
reconfigurable logic block can improve graphics processor memory access performance
by an order of magnitude for case study examples.

An advantage over a fully reconfigurable platform (for example, a field program-
mable gate array (FPGA) from Altera Co. or Xilinx Inc.) is that the architectural design
space is bounded. Put another way, the architecture has a clearly defined datapath onto
which an algorithm must be mapped. The result is a reduced design time. A fully re-
configurable platform requires the design of a specialised datapath.



The key benefits of post-fab customisation of an HoMP are a constrained application
design space alongside support for specialisation to an application domain.

In the remainder of this Section the classification of customisation options is ex-
plained and prior works used to exemplify the classified options.

A summary of the qualitative level of integration and lowest level of shared memory
for each option in Figure 1 is summarised in Table 1. Key features are discussed below.

Role Effect on Core Type Level of Integration ‘Shared’ Memory

1 Off-Chip Co-Processor Heterogeneous Low DRAM
2 On-Chip Co-Processor Heterogeneous L2 Cache
3 Local Co-Processor Homogeneous L1 Cache
4 Custom Instruction Homogeneous Registers
5 Glue Logic Homogeneous High –

Table 1.A Summary of the Roles for RL within a HoMP

For classifications(1) to (4) the level of shared memory is the key identifier. As the
level of integration increases, the granularity of the separation of tasks between a RL
element becomes finer grained, from a co-processor to a custom instruction. For class
(1), different algorithms and video frames may be computed on the RL co-processor
and the HoMP. In contrast, in class(4) a single instruction from the assembly code of a
processor PE may be accelerated on a RL core.

Class(5) presents an orthogonal use of RL to classes(1)–(4). Instead of performing
computation on a part or whole algorithm, RL is used to optimise the architecture in
such a manner as to improve HoMP performance for a given algorithm. This is termed
as ‘glue logic’ and is an exciting new area in which the use of RL can thrive.

Prior works which exemplify the options in Figure 1 are now discussed.
The literature contains numerous works promoting multi-chip solutions to using RL

(in the form of FPGAs) and a graphics processor as class(1) co-processors [15–18].
Moll [15] presents Sepia, where an FPGA is used to merge outputs from multiple

graphics processors. The FPGA performs a subsection of the target 3D visualisation
algorithm which makes this a class(1) use of RL.

Manzke [16] combines an FPGA and graphics processor devices on a PCI bus with
a shared global memory. The goal is to produce a scalable solution of multiple boards.
In Manzke’s work the FPGA is master to the graphics processor. For Sepia, the graphics
processor output drives the FPGA operation with prompt from a host CPU [15].

An equivalent setup to [15–18] for a Cell BE is proposed by Schleupen [19], this is
also an example of a class(1) use of RL.

The work in [15–19] can alternatively be considered as a prototype for a single die
solution containing a HoMP, RL and shared memory (class(2)).

Although not fully programmable, the Cell BE DMA engine exemplifies a class3
use of RL. In a more abstract sense Sun’s forthcoming SPARC-family Rock processor is
another class3 example. Although there is no separate hardware, ’scout threads’, spec-
ulative clones of the primary thread, use the hardware multi-threading support to run
ahead of stalls to execute address generation code and pre-fetch data into the cache [20].

Dale [21] proposes small scale reconfiguration within graphics processor functional
units. This is a class(4) approach. A functional unit is substituted with a flexible arith-



metic unit (FAC) which can be alternately an adder or multiplier. A moderate4.27%
computational performance speed-up for a0.2% area increase is achieved. Although
the speed-up is small, this demonstrates the potential of the use of reconfiguration in
graphics processors at the lowest denomination of the architecture.

Yalamanchili [22] presents two class(5) options. First, a self-tuning cache which
matches the memory access requirements to the cache usage heuristic. Second, tuned
on-chip interconnects to increase bandwidth for critical paths.

In [14], the authors propose REDA, a reconfigurable engine for data access targeted
at graphics processors. REDA is embedded into the graphics processor memory system
to optimise its memory access behaviour. This is a class5 use of RL.

Coarse-grained reconfigurable architectures (CGRA), such as MathStar’s Attrix FPOA
device [23], are another example of a class(5) use of reconfigurable logic.

There are also a number of prior works which present equivalent solutions, to those
shown above, for the case ofheterogeneousmulti-processors.

Chen et al [24] use RL as a controller in a system-on-chip solution. The RL core
makes a complex system-on-chip appear as a single co-processor to an external host
processor. This is class(5) glue logic.

Verbauwhede [25] presents RINGS. Three locations for RL in a network-on-chip
are presented as register mapped (class(4)), memory-mapped (class(3)) and network
mapped (class(2)). The terminology describes the hierarchy at which the RL core is
implemented and, in similarity to Table 1, the shared memory. Verbauwhede [25] also
presents a reconfigurable interconnect arbitration scheme which is a class(5) scenario.

A run-time management scheme for multi-processor systems-on-a-chip is presented
by Nollet [26]. It is proposed that RL may be used to implement a flexible hardware
management unit. This is also a class(5) use of RL.

It is observed that the scheme in Figure 1 is well suited to classifying a spectrum of
uses of RL in HoMPs, with equivalent interpretations for heterogeneous architectures.
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4 Design Space Exploration Approach

This section summarises the proposed approach, with is depicted in Figure 2. An over-
all picture of the exploration methodology is shown in Figure 2(a) and the process of
evaluating customisation options in Figure 2(b). The approach is described as follows.

In Figure 2(a), the entry point to the design space exploration approach is alternative
architecture templates and application characteristics. The architecture template and
application model described in Section 5 initialise our design space.

The architecture design space is explored through considering pre- and post-fabrication
customisation options. These can be arbitrarily chosen from the features of the template
architecture. This process is explained in Figure 2(b).

An application design space is traversed by considering algorithm optimisations.
As described in Section 2, the choice of application and architecture is not mutually

exclusive, and an application mapping region is defined. The addition of application
mapping is particularly important for HoMPs. This is because the choice of application
mapping affects the architecture choice and ultimately the programming model.

Once a set of architecture and application features have been chosen, from the re-
spective design spaces, the options are used to parameterise the system model.

When a reconfigurable logic post-fab customisation option is proposed, the design
may require a prototype to determine the area cost, maximum clock speed or power
consumption. Alternatively, one may require a HoMP ‘test run’ to verify a proposal.

The combination of system model and low-level prototyping form the development
environment. At progressively later stages in a design process, increased portions of a
proposed architecture are prototyped in such a manner.

The output from the development environment is performance figures which are
used to evaluate the suitability of the proposed architecture against application require-
ments. Example requirements in our case are to minimise clock cycle count or number
of off-chip memory accesses. The process is iterated to alter application and/or archi-
tecture feature choices through educated conjecture after the performance evaluation.

The application of the approach in Figure 2(a) to the evaluation of customisation
options is defined in Figure 2(b).

There are three key stages to the evaluation of customisation options. These are
summarised below alongside examples of where these stages are employed.
Stage a:The exploration of pre-fab customisation options, which also defines the ar-
chitecture critical paths (Sections 6, 7 and 8).
Stage b:From the analysis of critical paths post-fab customisation options are proposed
(Section 9). The proposal is to supplement current blocks with RL (as chosen pre-fab).
Stage c:A heuristic for blocks supporting post-fab modifications is chosen. This deter-
mines the configuration to be applied for a particular algorithm (Section 9).

It is observed thatstage ais typically the largest part of the exploration process and
thus consumes the greatest portion of the work presented here.

A tool flow for the approach is summarised below.
As described in Section 2, SystemC is used to implement the system model. A C++

wrapper encloses the SystemC model to support modification of the two design spaces.
To enable rapid prototyping of low level modules the VHDL language is used. Open

loop tests may alternatively be implemented on a graphics processor, using for example



Cg and the OpenGL API. This part of the tool set is not used in this work, however, it
is used in [14] which is cited in Section 9 as an application of the exploration process.

For visualisation of the performance results the Mathworks MATLAB environment
is used. In addition, system trace files record the behaviour of a definable subset of
signals. This setup minimises the impact on simulation time.

At present the process is fully user driven, however, it is opportunistically possible
to automateStage ain Figure 2(b). An example of how can be found in work by Shen
on the automated generation of SystemC transaction level models [27].

5 The System Model

In this section, the design space of HoMP architectures is described alongside a model
to explore the graphics processor architecture. The motivation of the model and design
space is to support the methodology proposed in Section 4.

As highlighted in Section 4, the ‘Y-Chart’ [4] is augmented with an application
mapping sub-set. The architecture design space is therefore divided into core archi-
tectural features and application mapping features, as shown in Figure 3(a). Note that
application mapping is grouped with core application features to form the architecture
feature set. The core architectural features represent the underlying architecture which
is transferrable between different application mappings (and programming models).
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Fig. 3. The Architectural Design Space for the HoMP Class of Architectures

In Figure 3(b), the architecture features are presented against an increasing degree
of customisation. Regions of the design space represent the customisation options. This
work focuses on number of PEs, on-chip memory type (cache size), and number of
threads in Section 8 and in Sections 6 and 7 processing pattern.

To explore the design space of the graphics processor for the case study of this
work a high-level system model is shown in Figure 4. The astute reader will observe
how, with modification, this model may be targeted at alternative HoMPs.

Figure 4(a) shows a one PE example. The pattern generation module supplies each
PE with the order in which to process pixels. PE input pixel data is received from off-
chip memory through the on-chip memory system (read-only in this example). When



Key Value

P Pixel processing pattern order
(xp, yp) General pixel address)
T̂ Thread batch size (thread level parallelism)
n number of processing elements (PEs)
W Pattern of accesses for each output (represented as an offset from current output pixel)
C On-chip memory access pattern (intersection ofP andW
A Off-chip memory access pattern (C subject to cache behaviour)
nconv 2D convolution kernel dimensionality (symmetric)
Nin Number of input pixels per row of input frame
(sx, sy) Resizing ratio for interpolation / decimation
CPO Clock cycles per output pixel
|| Absolute operator, used to represent size e.g.|C| is total number of off-chip accesses

Table 2.Symbols used in Formulae

processing is complete, PE outputs are written to off-chip memory through an out-
put buffer. Figure 4(b) shows the extension to multiple PEs. The PEs are arranged
in processing groups, in this example in groups of four. A memory management unit
(MMU) arbitrates memory accesses through a given choice of on-chip memory. This
setup mimics a graphics processor [6, 28].

The pixel processing patternP is an arbitrary sequence. This is a simplification of
the graphics processor setup where processing order is output from a rasteriser.

A popular video memory storage format and rendering rasterisation ordering is the
z-pattern [29]. In general a pixel address{xp, yp} is calculated as follows. Consider
that pixel iteratorp is represented as a bit-vector (p = pn−1...p2p1p0), where location
zero is the least significant bit. Then thexp andyp values are the concatenations of even
(xp = pn−2...p4p2p0) and odd (yp = pn−1...p5p3p1) bit locations respectively.

PE

Off-Chip

Memory

On-Chip

Memory

Output

Buffer

A

C

Output

P

From

Pattern

Generation

Model

Extension to

Multiple PEs

P

(a) A Single Processing Element (PE)

...

A

C
0

C
c-1

... MMU

On-Chip

Memory

PE PE

PE PE

PE PE

PE PE

Processing

Group 0

Processing

Group c-1

(b) Extension to Multiple (n)
Processing Elements (PEs)

MMU is an acronym for memory management unit

Fig. 4. High Level Representation of the Design Space Exploration Model



For horizontally raster scanned video an equivalent processing pattern description to
that for the z-pattern isxp = pn

2−1...p0 andyp = pn−1...pn
2

. A raster scan or z-pattern
can be generated using ann-bit counter and bit rearrangement.

The model is implemented such thatT̂ threads can be computed across then PEs.

For simplification T̂
n threads are live on each PE at any instant. On a graphics proces-

sor, a thread may in general be scheduled to different PEs at different points in the
computation. However, this arrangement is deemed sufficient.

A graphics processor’s thread batch size can be estimated using a computationally
intensive kernel to minimise the effect of cache behaviour and to emphasize steps in
performance between thread batches. The chosen kernel is the American Put Option
financial model [30] which requires446 computational instructions to one memory
access per kernel. Figure 5 shows the performance results for the nVidia GeForce 7900
GTX graphics processor for increasing output frame size from1 to 10000 pixels.

It is observed that steps in time taken occur at intervals1300 outputs. This is the
predicted thread batch size (T̂ ).
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Fig. 5. Concurrent Thread Estimation for the nVidia GeForce 7900 GTX (1300 per batch)

For the nVidia GeForce 6800 GT steps are observed at intervals of1500 pixels.
Application Model: The PE application model is a function of computation delay
(taken from [8]) and memory access requirements. The pseudo-code for the memory

accesses for one PE is shown in Figure 6. A set ofT̂
n output locations is input from the

pattern generation block (Line0). Memory requests occur as a set ofW accesses (Line
1). Inside the outer loop requests are made for each threadi (Line 2) on Line3. The PE
then waits until all requests are satisfied (Line4) and then iterates for the next value of
w. Once all read requests are made, output pixel values are written to an output buffer
(Line 5). The code iterates until the end of the processing pattern occurs. Functionf is
an arbitrary linear or non-linear address mapping.

0. Get T̂
n

thread addresses fromP
1. For all Accessesw = 0 to W − 1

2. For all Threadsi = 0 to T̂
n
− 1

3. Request Addressf(i, w)
4. Wait until All Read Requests Granted

5. Output T̂
n

thread results

Fig. 6. A Model of the Behaviour of a PE



6 System Model with a Single Processing Element

A system model with one PE, as shown in Figure 4(a), and one execution thread (T̂ = 1)
is considered in this Section. It is interesting to compare results for a z-pattern and
horizontal raster scan processing order. For each scenario the on-chip (C) and off-chip
(A) memory access pattern are shown in Figures 7 and 8 respectively.
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Fig. 7.On-chip memory access (C) performance for decimation and 2D convolution for a model
with one PE and one execution thread. Output frame size is256× 256 pixels.

For the z-pattern processing order the variation in required on and off-chip memory
addresses is significantly larger than that for raster scan processing. To quantify this
difference, for on-chip reads, consider the convolution case study.

For raster scan the peak distance between reads for each output isnconv rows of
an image, wherenconv is the convolution size. In Figure 7(a) this equals∼ 5 × 256
pixel locations as shown by the heavy type line. In general the maximum step size is
∼ nconvNin pixels, whereNin is the number of pixels per row of the input frame.

In contrast, for the z-pattern the peak range of memory accesses for one output
is requests in opposing quadrants of the input video frame. This equals∼ 2

(
256
2

)2

pixel locations and is demonstrated in Figure 7(a) with variations in excess of30k pixel

locations. In general the maximum variation is∼ 2
(

Nin

2

)2
pixels. This is significantly

larger than for raster-scan.
For decimation, Figure 7(b) demonstrates a similar scenario. Input frame size is

s−1
x × s−1

y times larger than for convolution, wheresx andsy are the horizontal and
vertical resizing ratios respectively. The irregular pattern for the z-pattern occurs be-
cause input frame dimensions are buffered up to a power of two.

The off-chip memory access patterns (A) for each case study are shown in Figure 8.
These patterns approximate the on-chip accesses as expected. A two to three order
of magnitude reduction in the number of on-chip (|C|) to off-chip (|A|) accesses is
observed in all cases. This indicates good cache performance. The raster access pattern
has the lowest value of|A|. This is in fact the optimum value for each case study. For
the z-pattern,|A| is within 1.5 times that for a raster scan pattern. The difference is due
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Fig. 8.Off-chip memory access (A) performance for decimation and 2D convolution for a model
with one PE and one execution thread. Output frame size is256× 256 pixels.

to the larger degree of variance in on-chip accesses (C). A greater variation in memory
address location also correlates with a poor DRAM memory access performance [31].

Due to the large reduction between|C| and|A|, the performance for each choice of
access pattern is not bounded by off-chip memory accesses. The estimated number of
clock cycles required is4.06M for decimation and2.1M for 5× 5 convolution in both
access pattern scenarios. It is interesting to now consider the extension of these issues
to a system model for the case of multiple threads (T̂ ) and PEs.
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(b) 1080p to 480p Decimation

Fig. 9. Off-chip memory access (A) performance for a model with sixteen PEs andT̂ = 1500
(equivalent to nVidia GeForce 6800 GT). For an output frame size of256× 256 pixels.

7 System Model with Multiple Processing Elements

To demonstrate an extended case, off-chip memory access performance for the algo-
rithms from Section 6 and a model with16 PEs and1500 threads is shown in Figure 9.



Despite a large degree of multi-threading, the memory access behaviour for 2D
convolution in Figure 9(a) is similar to that in Figure 8(a). This is because of the large
probability that data will be reused between output pixels. For the raster scan pattern|A|
is the optimum value, as was the case in Figure 8(a). For the z-pattern, a small increase
in |A| is observed from Figure 8(a) due to memory access conflicts between threads.

A significant change in the pattern ofA occurs for the decimation case study in Fig-
ure 9(b). For both processing patterns an increased number of off-chip accesses (|A|) is
required in comparison to Figure 8(b) to satisfy on-chip memory access requirements.
The lowest performance is observed for the z-pattern where|A| is only an order of mag-
nitude less than number of on-chip accesses (|C|) (approximately that in Figure 7(b)).
Three factors influence the increased in|A| for the z-pattern case as explained below.

First, decimation has less potential for pixel reuse (between neighbouring outputs)
than convolution. The decimation factor in Figure 9(b) issx = 3, sy = 2.25. This
translates to a proportion of pixel reuse between two outputs of4

16 to 8
16 . In comparison,

for convolution size5 × 5, the pixel reuse is2025 . For decimation a greater number of
threads require a different cache line to the previous thread. This increases cache misses.

Second, the variation inC. The choice of a non-power of two resizing ratio is shown
to make this pattern irregular in Figure 7(b). This increases conflict cache misses.

Third, the cache replacement policy is also inefficiently utilised due to the non-
power of two input frame size.

The increase in|A| in Figure 9 is reflected in the number of clock cycles per output
(CPOm). For convolution CPOm increase between raster and z-pattern method from
58 to 62. The extra latency for increased number and variance ofA, for the z-pattern
method, is mostly hidden through the combination of multi-threading and a large num-
ber (5× 5 in Figure 9(a)) of spatially local on-chip memory accesses.

For decimation, the change in CPOm between raster and z-pattern methods is more
significant. In this case the raster scan and z-pattern scenarios require92 and250 CPOm

respectively. The z-pattern method is off-chip memory access bound under these con-
ditions. A raster scan processing pattern is advantageous under the case study scenario
of low data reuse potential. This is explored further in Section 9.

8 Architecture Trends

In this section the model is used to explore architectural trends for number of PEs, cache
size and number of threads. This exemplifiesStage ain Figure 2(b).

A summary of the number of off-chip memory accesses (|A|) and clock cycles per
output (CPO) for changing number of PEs, for four case study algorithms, is shown in
Figures 10(a) and 10(b). For all tests the system model setup captures the performance
of the GeForce 6800 GT, the number of computational threads isT̂ = 1500, and a
z-pattern processing order is used throughout. Number of PEs is the variable.

The case study algorithms are bi-cubic decimation, bi-cubic interpolation, 2D con-
volution and primary colour correction algorithms. The last three are taken from [28].

For primary colour correction, convolution and interpolation CPO remains consis-
tent across all numbers of PEs. Primary colour correction is a computationally bound
algorithm so this is as expected, the value of|A| is minimum at1024.



(a) |A| for Varying Case Studies and PEs
with Cache Size16KB

(b) CPOm for Varying Case Studies and
PEs with Cache Size16KB
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(c) |A| for Varying Decimation Ratios
with 4× 4 PEs and Cache Size16KB
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(d) CPOm for Varying Decimation Ra-
tios with 4 × 4 PEs and Cache Size
16KB
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(e) |A| for Varying Cache Size for
Decimation1080p to 480p and4 × 4
PEs
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(f) CPOm for Varying Cache Size for
Decimation1080p to 480p and4 × 4
PEs

Fig. 10.Performance for Varying Design Space Parameters (as Indicated) and Case Studies (with
a fixed256× 256 pixel input frame size)



For the setup in Figure 10, each MMU has direct access to on-chip memory. There-
fore, the on-chip memory bandwidth scales linearly with the number of PEs. This ex-
plains the equal value of CPO for all variants of number of PEs.

A change of up to three times in|A| is observed for5 × 5 to 11 × 11 sized convo-
lutions. In all cases CPO remains unchanged. The increase in|A| is hidden by multi-
threading and a large number of on-chip memory accesses.

In similarity to the exploration in Section 7, interpolation exhibits a greater potential
for data reuse between neighbouring outputs (from12

16 to 16
16 ) than 2D convolution (fixed

at (nconv−1)nconv

n2
conv

). CPO is therefore also equal for each interpolation ratio. This is
despite a difference in|A| of approximately two times. The multi-threaded computation
is again successful in hiding off-chip memory access requirements. For convolution and
interpolation the critical path is theon-chip memory bandwidth.

The most significant variations in|A| and CPO occur for the decimation case study.
Whilst 1080p to 720p decimation has a consistent CPO across all numbers of PEs the
1080p to 576p case shows more significant variations. This is due to a larger scaling
factor for the1080p to576p case. In this scenario|A| (and cache misses) is large enough
to make decimation off-chip memory access bound. The performance degradation is
proportional to the number of PEs.

Decimation is investigated further in Figures 10(c) to 10(f).
In Figures 10(c) and 10(d) varying decimation ratios are plotted for a setup of16 PEs

and a16 KByte cache size, which is equivalent to a GeForce 6800 GT. As the number
of threads per PE is increased CPO and|A| increase. This effect is most prominent for
larger decimation factors. It is observed that as the resizing factor increases, the CPO
trend adopts increasing similarity to the|A| trend. This is concurrent with the system
beingoff-chip memory bandwidth bound.

For scenarios where the system becomes memory bound there are two choices. First
to reduce the number of threads (T̂ ) or secondly to increase cache size. For the worst
performing decimation size (1080p to 480p) this tradeoff is shown in Figures 10(e)
and 10(f). It is observed that as the cache size is increased,|A| (and ultimately CPO)
decreases sharply. An approximately linear relationship between CPO and cache size is
observed. Ultimately further non-modelled factors affect the performance as cache size
is increased, for example, increased cache access latency.

To summarise the relationship between thread countT̂ and required memory size
Breq for good cache performance is shown in Equation 1, whereR andNreads are the
amount of data reuse (exemplified above) and number of reads respectively.

Breq > Nreads + (1−R)T̂ (1)

If Breq exceeds on-chip memory size a large value of|A| is expected. AsBreq ap-
proaches the on-chip memory size,|A| increases subject to the choice of reuse heuristic
(in this case a4-way associative cache). This effect is exemplified for increasingT̂ in
Figures 10(c) to 10(f). A shift in the graphs is observed for varying cache size as the
number of threads and memory size change. For decimation the reuseR is inversely
proportional to the resizing factorssx andsy in x andy dimensions respectively.

The model performance for case study algorithms in Figures 10(a) and 10(b) can be
compared to results for two sample graphics processors as shown in Table 3.



CPOgf6 CPOgf7 CPOm

PCCR 60 43 63
2D Conv (5× 5) 41 37 62
2D Conv (9× 9) 162 144 187
2D Conv (11× 11) 263 230 282
Interp (576p-1080p) 52 47 61
Interp (720p-1080p) 53 48 61
Deci (1080p-576p) 90 84 187
Deci (720p-480p) 78 68 86
Deci (1080p-720p) 69 66 75

Table 3.Verification of the Model. CPO is cycles per output for the model (m), nVidia GeForce
6800 GT (gf6) and nVidia GeForce 7900 GTX (gf7)

Over all case studies the CPO for the model (CPOm) approximate those for the
nVidia GeForce 6800 GT (CPOgf6) and follow the trend for the GeForce 7900 GTX
(CPOgf7). Cycle estimates are higher for the model because its architecture is not
pipelined to the extent of a graphics processor.

For the GeForce 6800 GT, the number of clock cycles per internal memory access
(CPIMA) for 2D convolution is a constant2.4. The results for the model (CPOm) range
from 290 to 62 cycles per output for convolution size11 × 11 and5 × 5 respectively.
This equals to a value of CPIMA of approximately2.4 to 2.5. The model mimics the
on-chip memory timing of the graphics processor well.

Model implementations of small decimation sizes are well matched to the perfor-
mance of the graphics processor. A small overhead in number of cycles per output is
again observed over equivalent implementations on the GeForce 6800 GT.

An anomaly occurs for decimation size1080p to 576p where model results deviate
from those for the graphics processors. Four potential reasons for this are as follows.

1. The multi-threaded behaviour is not fully pipelined within the MMU. For the case
of large decimation sizes this amplifies memory access cost.

2. The computation model does not fully synchronise the execution of all PEs. This is
again troublesome for algorithms with poor memory access behaviour.

3. The cache size estimate of16 KBytes for the nVidia GeForce 6800 GT may be
incorrect. If a cache size of32 KBytes is taken CPOm reduces to74.

4. Although a latency and delay based model of off-chip DRAM is created, the latency
of the entire interface to the DRAM and finer detail of the DRAM is omitted.

Despite the above limitations the model is observed in Table 3 to, under correct
parametrisation, correlate well with the performance of two sample graphics processors.

The run time for the system model is between1 and5 minutes for all case studies.
Although the model is not optimised, it is sufficient for exploration with large input
frame sizes. For a frame size of2048 × 2048 pixels the simulation time increases to a
manageable25 minutes for the decimation case study.

9 Post-Fabrication Customisable Options

In this Section the results in Sections 6, 7 and 8 are used to reason post-fab customisa-
tion options (this exemplifiesStage bin Figure 2(b)).



First, the off-chip memory system performance is the critical path for large deci-
mation factors. This prompts investigation into ways to improve the memory system
for the memory access pattern of decimation. In [14] the authors investigate this option
which is an execution ofStage cin Figure 2(b) and promotes the exploration tool.

Second, to change the choice of PE in Figure 4. In general a PE may not be a
processor and may support reconfiguration. This option is considered by the authors
in [28]. An example application is to support local data reuse for a PE to overcome the
on-chip memory bandwidth critical path for convolution and interpolation.

Third, a final option not previously considered is to alter the processing pattern. The
opportunity for this has been demonstrated in Sections 6 and 7. This option is now used
to demonstrateStage cof the approach in this work as outlined below.

To quantify the changing of processing pattern over different cache sizes and dec-
imation factors consider a summary of the performance of a raster and z-pattern as
shown in Table 4. In either case the pattern is used for both processing order and mem-
ory storage with all else constant. It is observed that for large decimation factors up to
a four times reduction, in both number of memory accesses and cycles per output, is
achieved from using a raster scan pattern.

Z-Pattern Raster Scan

16KB 32K 64K 16K 32K 64K

A 127319669841022329828 8910 7596
(258) (146) (63) (92) (62) (62)

B 87671 15387 6084 26133 8112 5138
(180) (63) (62) (82) (62) (62)

C 29144 6481 6481 15779124733591
(79) (62) (62) (68) (66) (62)

D 12756 3124 3124 13835 4332 2695
(62) (62) (62) (66) (62) (62)

E 12347 2770 2770 12967 4783 2568
(63) (62) (62) (66) (62) (62)

A=1080p to 480p, B=1080p to 576p, C=720p to 480p, D=1080p to 720p and E=720p to 576p
Table 4.Number of Off-Chip Memory Accesses and (Cycles per Output) for Varying Processing
Patterns and Decimation

As reasoned in Section 7, the justification is that, for the raster scan case, con-
flict cache misses only occur due to the horizontal resizing factor. For the z-pattern
approach, cache misses occur due to both horizontal and vertical resizing factors due
to the 2D nature of the z-pattern. As cache size is increased, the benefit of the raster
scan approach diminishes. This is because the algorithm becomes on-chip memory ac-
cess limited under these conditions, for which the access time and latency is fixed. For
smaller decimation factors the z-pattern can be beneficial over the raster scan approach.
This occurs when the horizontal resizing factor exceeds the vertical factor. A vertical
raster pattern could be used to alleviate this issue.

The choice of processing and memory storage pattern is shown to have a significant
effect on a subset of algorithms with low data reuse potential. For a graphics applica-
tion the z-pattern is the optimal choice. This therefore presents an avenue for post-fab



customisation to switch between alternative processing patterns depending on the target
application domain. The mapping between a z-pattern and raster scan pattern requires
bit reordering as explained in Section 5. In the case of two alternative patterns this is
implemented with one multiplexor and a configuration bit.

Intentionally, this example is straight forward as a demonstration of the exploration
process. It is observed through related work [14, 22, 25] that the exploration of post-fab
customisation options can provide even higher performance improvements, of up to an
order of magnitude, albeit for a higher area cost than the example here.

As with [14] the example presented above is a class5 customisation from Figure 1.

10 Implications for other Graphics Processors and the Cell BE

Whilst the results above are based on the nVidia GeForce 6 and 7 series graphics proces-
sors, the current state of the art has progressed, examples are considered below.

The architecture template of the AMD ATI Radeon and nVidia GeForce 8 (more
recently GeForce 9) series graphics processors is fundamentally similar to the model in
Figure 4. A large number of PEs are arranged in processing groups and arbitrate through
a local MMU to access off-chip memory through shared on-chip memory (cache).

One difference for the Radeon and GeForce 8 graphics processors is that fragment
and vertex pipelines are combined in a unified shader. However, the level of abstraction
in Figure 4(b) could equally represent a unified shader, in contrast to only the fragment
pipeline. For 2D video processing, vertex processing requirements can be disregarded
because they are trivially four corner coordinates of the output frame.

The processing elements in the GeForce 8 graphics processors are different from
prior GeForce generations. For example, the GeForce 8 now contains scalar PEs. An
advantage of scalar processors is a reduction in cycle count through increased processor
utilisation, over a 4-vector processor performing computation on 3-component video
data. This modification is trivial to support in the PE model in Figure 4.

If the implementations from Section 8 were directly ported to a Radeon or GeForce
8 architecture a similar performance trend would be observed, with variations due to a
different trade off of number of PEs, on-chip memory size and number of threads.

Current state of the art AMD ATI Radeon and nVidia GeForce 8 generation of
graphics processors have an enhanced and more flexible ‘application mapping’ which
is programmable through the CTM (close to metal) and CUDA (compute unified device
architecture) programming environments respectively. An immediate advantage is that
off-chip memory accesses can be reduced for previously multi-pass algorithms through
storage of intermediate results in on-chip memory for later reuse. In addition the con-
tents of on-chip memory can be controlled. This presents an exciting new domain of
algorithm optimisations, for example, the ability to control, within limits, the contents
of on-chip memory may improve performance for the decimation case study.

The Cell BE presents a shift from the model adopted in Figure 4. In addition to
shared global memory a large memory space is local to each processing group. This
can be considered as local to the MMU. However, DMA access can be made between
MMUs over the EIBTM bus. Processing groups also operate independently which poses
further opportunities for algorithm optimisations.



One intriguing possibility is to consider post-fab customisation of the Cell BE DMA
engine. In one instance the customisable DMA engine may be used to implement an
address mapping function similar to that in [14]. Alternatively, a grander opportunity is
a configurable DMA engine that on-prompt generate its own addressing patterns.

In general, for alternative HoMPs the core architecture features in Figure 3 are
consistent, with minor variations. The key difference is in application mapping char-
acteristics. These include the choice of address space (local, global and control) and
restrictions on PE execution behaviour.

The results in Sections 6, 7 and 8 show some of the architectural trends for the
core architecture features which are present in all HoMPs. However, for each HoMP
a different application mapping is chosen. This translates to a new algorithm set of
optimisation techniques. Re-parametrisation of the model’s application mapping feature
set, and choice of algorithm optimisations, is required to support alternative HoMPs.

11 Summary

A novel design space exploration tool has been presented with the application of ex-
ploring the customisation options for a Homogeneous Multi-Processor (HoMP). The
tool has been demonstrated using the example of an architecture which captures the
behaviour of a graphics processor and an application domain of video processing.

To provide a broadened prospective of the work a classification scheme for post-
fab options was presented in Section 3. The effectiveness of the classification has been
demonstrate through its application to prior art and to classify the proposal in Section 9.

Our exploration tool is divided into a systematic approach to exploring customisa-
tion options and a system model. The systematic approach in Section 4 is an adapted
version of the well known Y-Chart method, with an adaptation to capture specifically the
architectural features which support the programming model. As part of the approach
the customisation options are separated into post- and pre-fabrication options. The asso-
ciated model, in Section 5, comprises high-level descriptors and is implemented using
the SystemC class library and a Kahn process network structure.

Architecture performance is explored using the model. In Section 6, the effect of
processing pattern on a single PE and thread example is analysed. This analysis is ex-
tended to the multiple PE and multiple thread case in Section 7. The analysis in both
sections promotes the post-fabrication customisation option presented in Section 9.

Architecture trends are explored using four case study examples in Section 8. The
options of number of PEs, number of threads and cache size are demonstrated. Along-
side these results the model is verified and critiqued against two graphics processors.
The behaviour of the graphics processors is shown to be captured by the model.

The architecture trends and analysis from Sections 6 and 7 are used to propose
post-fabrication customisation options in Section 9. A positive result is to customise
processing pattern which improves performance by four time for a negligible area cost.
This is a class5 ‘glue logic’ use of reconfigurable logic from Section 3.

A grander result of the paper is that the work demonstrates the strengths of the ex-
ploration tool and classification in the design of a customised HoMP. We hope that the



work will stimulate future research in this area.

In addition to automation as mentioned in Section 4, further work would involve
exploring customisation options for other homogeneous multi-processors including the
Cell BE, Radeon and GeForce 9 series. The Intel Larrabee, due to be released in 2009,
is a newer architecture which may also present exciting opportunities for customisation.

It is also interesting to investigate customising a processor’s memory subsystem. In
particular customisation of the mapping of off-chip to on-chip memory in a Cell BE
DMA engine. Finally, it is also important to study customisation of system intercon-
nects [22] and heterogeneous architectures.
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