
OPENCL™ C++

Lee Howes

AMD

Senior Member of Technical Staff, Stream Computing

Benedict Gaster

AMD

Principle Member of Technical Staff, AMD Research

(now at Qualcomm)

2 | OpenCL C++ | March 16, 2013

OPENCL™ TODAY

WHAT WORKS, WHAT DOESN’T

3 | OpenCL C++ | March 16, 2013

THE PROBLEM TODAY

OpenCL™ out of the box provides:

– C API

– C Kernel language

Excellent performance, but programming can be longwinded and difficult

For example, to enqueue a kernel, the programmer must:

4 | OpenCL C++ | March 16, 2013

THE PROBLEM TODAY

OpenCL™ out of the box provides:

– C API

– C Kernel language

Excellent performance, but programming can be longwinded and difficult

For example, to enqueue a kernel, the programmer must:

– Select a platform

– Select a device

– Create a context

– Allocate memory objects

– Copy data to the device

– Create and compile the program

– Create a kernel

– Create a command queue

– Enqueue the kernel for execution

– Copy data back from the device

5 | OpenCL C++ | March 16, 2013

Create the program

EXAMPLE – VECTOR ADDITION (HOST PROGRAM)

// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);

devices = malloc(cb);

clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, devices, NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, NULL);

memobjs[1] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, NULL);

memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(cl_float)*n, NULL, NULL);

// create the program

program = clCreateProgramWithSource(context, 1, &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &memobjs[0]);

err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &memobjs[1]);

err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *) &memobjs[2]);

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, memobjs[2], CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Define platform and queues

Define memory objects

Build the program

Create and setup kernel

Execute the kernel

Read results on the host

Ugly, isn’t it.

Extreme portability.

Luckily… Same boiler-plate code

across virtually every OpenCL host

code

6 | OpenCL C++ | March 16, 2013

OPENCL™ C++

IMPROVING THE PROGRAMMING

MODEL

7 | OpenCL C++ | March 16, 2013

OPENCL™ C++ FEATURES

Khronos has defined a common C++ header file containing a high level interface to OpenCL

 It’s much easier than using the C API, but it still needed work

 Improved C++ host API:

– Interface for all OpenCL C API

– Statically checked information routines (type safe versions of clGetInfoXX())

– Automatic reference counting (no need for clRetain()/clRelease())

8 | OpenCL C++ | March 16, 2013

OPENCL™ C++ FEATURES

Khronos has defined a common C++ header file containing a high level interface to OpenCL

 It’s much easier than using the C API, but it still needed work

 Improved C++ host API:

– Interface for all OpenCL C API

– Statically checked information routines (type safe versions of clGetInfoXX())

– Automatic reference counting (no need for clRetain()/clRelease())

– Defaults (platform, context, command queues, and so on.)

– Kernel functors

– and more…

9 | OpenCL C++ | March 16, 2013

INTERFACE FOR ALL OPENCL™ C API

Single header file and inside a single namespace

#include <CL/cl.hpp> // Khronos C++ Wrapper API

using namespace cl;

Each base object in the OpenCL C API has a corresponding OpenCL C++ class

– cl_device_id cl::Device

– cl_platform_id cl::Platform

– cl_context cl::Context

– etc…

Unlike C API, multiple ways of constructing OpenCL objects are possible through object constructors

Can still get to corresponding C object through operator()

10 | OpenCL C++ | March 16, 2013

AUTOMATIC REFERENCE COUNTING

OpenCL™ object lifetimes are explicitly managed through reference counting (retain, release)

– Common source of program errors!

– OpenCL C++ can do this implicitly through object destructors

cl_context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

cmd_queue = clCreateCommandQueue(context, devices[0], 0, NULL);

program = clCreateProgramWithSource(context, 1, &program_source, NULL, NULL);

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

kernel = clCreateKernel(program, “vec_add”, NULL);

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &memobjs[0]);
err = clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &memobjs[1]);
err = clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *) &memobjs[2]);

err = clReleaseKernel(kernel);
err = clReleaseProgram(program);
err = clReleaseMemObject(memobjs[0]);
err = clReleaseMemObject(memobjs[1]);
err = clReleaseMemObject(memobjs[2]);
err = clReleaseCommandQueue(cmd_queue)
err = clReleaseProgram(program);

OpenCL C API reference counts

objects

Explicit release is required

11 | OpenCL C++ | March 16, 2013

DEFAULTS

OpenCL™ C++ introduces defaults for common use cases

– Allows for a simple approach to writing basic applications

– Excellent for beginners

Provided defaults include:

– Platform: simply pick the first one

– Device: use the CL_DEVICE_TYPE_DEFAULT macro

– Context: created from the default device

– CommandQueue: created on the default device and context

Each OpenCL C++ class includes a static member function:

– static Type getDefault();

Supports routines to set defaults, which have a transitive effect

12 | OpenCL C++ | March 16, 2013

KERNEL FUNCTORS

Current OpenCL™ interface for kernels is extremely verbose:

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &memobjs[0]);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &memobjs[1]);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *) &memobjs[2]);

// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);

No guarantee of static type safety (both for arguments types or number of arguments)

OpenCL C++ introduces kernel functors:

– Type safe, directly callable kernels

std::function<Event (const EnqueueArgs&, Buffer, Buffer, Buffer)> vadd =
 make_kernel<Buffer, Buffer, Buffer>(Program(program_source), “vadd”);

vadd(EnqueueArgs(NDRange(n)), memobj[0], memobj[1], memobj[2]));

13 | OpenCL C++ | March 16, 2013

KERNEL FUNCTORS

Current OpenCL™ interface for kernels is extremely verbose:

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &memobjs[0]);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &memobjs[1]);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), (void *) &memobjs[2]);

// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, NULL, global_work_size, NULL, 0, NULL, NULL);

No guarantee of static type safety (both for arguments types or number of arguments)

OpenCL C++ introduces kernel functors:

– Type safe, directly callable kernels

std::function<Event (const EnqueueArgs&, Buffer, Buffer, Buffer)> vadd =
 make_kernel<Buffer, Buffer, Buffer>(Program(program_source), “vadd”);

vadd(EnqueueArgs(NDRange(n)), memobj[0], memobj[1], memobj[2]));

Kernel dispatch is just a

function call

14 | OpenCL C++ | March 16, 2013

PUTTING IT ALL TOGETHER: OPENCL™ C++ VECTOR ADD

std::function<Event (const EnqueueArgs&, Buffer, Buffer, Buffer)> vadd =

 make_kernel<Buffer, Buffer, Buffer>(Program(program_source), “vadd”);

memobj[0] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcA);

memobj[1] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcB);

memobj[2] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n);

vadd(EnqueueArgs(NDRange(n)), memobj[0], memobj[1], memobj[2]));

enqueueReadBuffer(memobj[2], CL_TRUE, sizeof(float) * n, dest);

15 | OpenCL C++ | March 16, 2013

PUTTING IT ALL TOGETHER: OPENCL™ C++ VECTOR ADD

std::function<Event (const EnqueueArgs&, Buffer, Buffer, Buffer)> vadd =

 make_kernel<Buffer, Buffer, Buffer>(Program(program_source), “vadd”);

memobj[0] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcA);

memobj[1] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcB);

memobj[2] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n);

vadd(EnqueueArgs(NDRange(n)), memobj[0], memobj[1], memobj[2]));

enqueueReadBuffer(memobj[2], CL_TRUE, sizeof(float) * n, dest);

Program automatically

created and compiled

16 | OpenCL C++ | March 16, 2013

PUTTING IT ALL TOGETHER: OPENCL™ C++ VECTOR ADD

std::function<Event (const EnqueueArgs&, Buffer, Buffer, Buffer)> vadd =

 make_kernel<Buffer, Buffer, Buffer>(Program(program_source), “vadd”);

memobj[0] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcA);

memobj[1] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcB);

memobj[2] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n);

vadd(EnqueueArgs(NDRange(n)), memobj[0], memobj[1], memobj[2]));

enqueueReadBuffer(memobj[2], CL_TRUE, sizeof(float) * n, dest);

Program automatically

created and compiled

Defaults, no need to

reference context,

command queue

17 | OpenCL C++ | March 16, 2013

PUTTING IT ALL TOGETHER: OPENCL™ C++ VECTOR ADD

std::function<Event (const EnqueueArgs&, Buffer, Buffer, Buffer)> vadd =

 make_kernel<Buffer, Buffer, Buffer>(Program(program_source), “vadd”);

memobj[0] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcA);

memobj[1] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcB);

memobj[2] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n);

vadd(EnqueueArgs(NDRange(n)), memobj[0], memobj[1], memobj[2]));

enqueueReadBuffer(memobj[2], CL_TRUE, sizeof(float) * n, dest);

Program automatically

created and compiled

Defaults, no need to

reference context,

command queue

No clReleaseXXX cleanup

code required

18 | OpenCL C++ | March 16, 2013

PUTTING IT ALL TOGETHER: OPENCL™ C++ VECTOR ADD

std::function<Event (const EnqueueArgs&, Buffer, Buffer, Buffer)> vadd =

 make_kernel<Buffer, Buffer, Buffer>(Program(program_source), “vadd”);

memobj[0] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcA);

memobj[1] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n, srcB);

memobj[2] = Buffer (CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(float) * n);

vadd(EnqueueArgs(NDRange(n)), memobj[0], memobj[1], memobj[2]));

enqueueReadBuffer(memobj[2], CL_TRUE, sizeof(float) * n, dest);

19 | OpenCL C++ | March 16, 2013

OPENCL™ C++

KERNEL LANGUAGE ENHANCEMENTS

20 | OpenCL C++ | March 16, 2013

OPENCL™ C++ ADDRESS SPACES

OpenCL programming model includes address spaces to explicitly manage memory hierarchy

– global, local, constant and private address spaces

– Example:

 kernel void foo(global int * g, local int * l)

This mostly extends naturally to OpenCL C++, however:

struct Colour {

 int r_, g_, b_;

 Colour(int r, int g, int b);

};

kernel foo(global Colour& gColour) {

 Colour pColour = gColour;

}

21 | OpenCL C++ | March 16, 2013

OPENCL™ C++ ADDRESS SPACES

OpenCL programming model includes address spaces to explicitly manage memory hierarchy

– global, local, constant and private address spaces

– Example:

 kernel void foo(global int * g, local int * l)

This mostly extends naturally to OpenCL C++, however:

struct Colour {

 int r_, g_, b_;

 Colour(int r, int g, int b);

};

kernel foo(global Colour& gColour) {

 Colour pColour = gColour;

}

C++ class member

functions carry an implicit

this pointer. What is it’s

address space? Note that

there is an implicit copy

constructor here.

22 | OpenCL C++ | March 16, 2013

OPENCL™ C++ ADDRESS SPACES CONTINUED

The copy constructor’s address space must be inferred

First of all we have allowed the developer to specify the address space:

struct Shape {

 int setColour(Colour) global + local;

 int setColour(Colour) private;

};

This would not have helped with the implicit copy constructor

23 | OpenCL C++ | March 16, 2013

OPENCL™ C++ ADDRESS SPACES CONTINUED

We have extended the type system to infer the address space from context

– I’m keeping this brief because Ben Gaster will discuss this in more detail later in this session

Use of auto and decltype allows even explicit this pointer use to work

operator (const decltype(this)& rhs) -> decltype(this)&

{

 if (this == &rhs) { return *this; }

 …

 return *this;

}

24 | OpenCL C++ | March 16, 2013

OPENCL™ C++ ADDRESS SPACES CONTINUED

We have extended the type system to infer the address space from context

– I’m keeping this brief because Ben Gaster will discuss this in more detail later in this session

Use of auto and decltype allows even explicit this pointer use to work

operator (const decltype(this)& rhs) -> decltype(this)&

{

 if (this == &rhs) { return *this; }

 …

 return *this;

}

C+11 features used to

handle cases when type

of “this” needs to be

written down by the

developer.

25 | OpenCL C++ | March 16, 2013

OPENCL™ C++ ADDRESS SPACES CONT’D

Further, we added the ability to parameterise on address spaces:

template<address-space aspace>

struct Shape {

 int foo(aspace Colour&) global + local;

 int foo(aspace Colour&) private;

 int bar(void);

};

26 | OpenCL C++ | March 16, 2013

OPENCL™ C++ ADDRESS SPACES CONT’D

Further, we added the ability to parameterise on address spaces:

template<address-space aspace>

struct Shape {

 int foo(aspace Colour&) global + local;

 int foo(aspace Colour&) private;

 int bar(void);

};

Abstract over address

space qualifiers.

27 | OpenCL C++ | March 16, 2013

OPENCL™ C++ ADDRESS SPACES CONT’D

Further, we added the ability to parameterise on address spaces:

template<address-space aspace>

struct Shape {

 int foo(aspace Colour&) global + local;

 int foo(aspace Colour&) private;

 int bar(void);

};

Abstract over address

space qualifiers.

Methods can be annotated with

address spaces, controls “this”

pointer location. Extended to

overloading.

28 | OpenCL C++ | March 16, 2013

OPENCL™ C++ ADDRESS SPACES CONT’D

Further, we added the ability to parameterise on address spaces:

template<address-space aspace>

struct Shape {

 int foo(aspace Colour&) global + local;

 int foo(aspace Colour&) private;

 int bar(void);

};

Abstract over address

space qualifiers.

Methods can be annotated with

address spaces, controls “this”

pointer location. Extended to

overloading.

Default address space for

“this” is deduced automatically.

Support default constructors.

29 | OpenCL C++ | March 16, 2013

SOME FUTURE EXTENSIONS

NOT YET PUBLIC, BUT YOU NEVER

KNOW

30 | OpenCL C++ | March 16, 2013

WE’VE LOOKED AT POSSIBLE NEW FEATURES FOR THE FUTURE.

Smart pointers

– To smoothly reuse code between discrete and shared memory infrastructures

– To allow integration of specialized descriptors and similar features in the future

Application of Æcute descriptors to OpenCL C++

– Support optimised code generation through separate descriptions of execution and memory mappings

31 | OpenCL C++ | March 16, 2013

SMART POINTERS

A pointer type designed to work on current hardware

Uses standard C++ design methodologies like custom allocators

– Strongly typed; maintain locality; could store base and offset

cl::Pointer<int> x = cl::malloc<int>(N);
for (int i = 0; i < N; i++) {
 *(x+i) = rand();
}

std::function<
 Event (const cl::EnqueueArgs&,
 cl::Pointer<int>)> plus =
 make_kernel<
 cl::Pointer<int>, int>(
 “kernel void plus(global Pointer<int> io)"
 “{int i = get_global_id(0);
 *(io+i) = *(io+i) * 2;}");

plus(EnqueueArgs(NDRange(N)), x);

for (int i = 0; i < N; i++) {
 cout << *(x+i) << endl;
}

32 | OpenCL C++ | March 16, 2013

SMART POINTERS

A pointer type designed to work on current hardware

Uses standard C++ design methodologies like custom allocators

– Strongly typed; maintain locality; could store base and offset

cl::Pointer<int> x = cl::malloc<int>(N);
for (int i = 0; i < N; i++) {
 *(x+i) = rand();
}

std::function<
 Event (const cl::EnqueueArgs&,
 cl::Pointer<int>)> plus =
 make_kernel<
 cl::Pointer<int>, int>(
 “kernel void plus(global Pointer<int> io)"
 “{int i = get_global_id(0);
 *(io+i) = *(io+i) * 2;}");

plus(EnqueueArgs(NDRange(N)), x);

for (int i = 0; i < N; i++) {
 cout << *(x+i) << endl;
}

Construct pointer with specialized

allocator

33 | OpenCL C++ | March 16, 2013

SMART POINTERS

A pointer type designed to work on current hardware

Uses standard C++ design methodologies like custom allocators

– Strongly typed; maintain locality; could store base and offset

cl::Pointer<int> x = cl::malloc<int>(N);
for (int i = 0; i < N; i++) {
 *(x+i) = rand();
}

std::function<
 Event (const cl::EnqueueArgs&,
 cl::Pointer<int>)> plus =
 make_kernel<
 cl::Pointer<int>, int>(
 “kernel void plus(global Pointer<int> io)"
 “{int i = get_global_id(0);
 *(io+i) = *(io+i) * 2;}");

plus(EnqueueArgs(NDRange(N)), x);

for (int i = 0; i < N; i++) {
 cout << *(x+i) << endl;
}

Assign and read pointer Assign and read pointer

34 | OpenCL C++ | March 16, 2013

SMART POINTERS

A pointer type designed to work on current hardware

Uses standard C++ design methodologies like custom allocators

– Strongly typed; maintain locality; could store base and offset

cl::Pointer<int> x = cl::malloc<int>(N);
for (int i = 0; i < N; i++) {
 *(x+i) = rand();
}

std::function<
 Event (const cl::EnqueueArgs&,
 cl::Pointer<int>)> plus =
 make_kernel<
 cl::Pointer<int>, int>(
 “kernel void plus(global Pointer<int> io)"
 “{int i = get_global_id(0);
 *(io+i) = *(io+i) * 2;}");

plus(EnqueueArgs(NDRange(N)), x);

for (int i = 0; i < N; i++) {
 cout << *(x+i) << endl;
}

Pass pointer to kernel functor.

35 | OpenCL C++ | March 16, 2013

SMART POINTERS

A pointer type designed to work on current hardware

Uses standard C++ design methodologies like custom allocators

– Strongly typed; maintain locality; could store base and offset

cl::Pointer<int> x = cl::malloc<int>(N);
for (int i = 0; i < N; i++) {
 *(x+i) = rand();
}

std::function<
 Event (const cl::EnqueueArgs&,
 cl::Pointer<int>)> plus =
 make_kernel<
 cl::Pointer<int>, int>(
 “kernel void plus(global Pointer<int> io)"
 “{int i = get_global_id(0);
 *(io+i) = *(io+i) * 2;}");

plus(EnqueueArgs(NDRange(N)), x);

for (int i = 0; i < N; i++) {
 cout << *(x+i) << endl;
}

Same type may be used in the kernel

code.

36 | OpenCL C++ | March 16, 2013

SMART POINTERS

Smart pointers can be used for allocating complex pointer-based data structures

– Storing the buffer offset allows this to work

struct Node {

 int value;

 Pointer<Node> next;

};

Pointer<Node> createNode(int x) {

 Pointer<Node> result = malloc<Node>(1);

 result->value = x;

 result->next = Pointer<Node>();

 return result;

}

37 | OpenCL C++ | March 16, 2013

SMART POINTERS

Smart pointers can be used for allocating complex pointer-based data structures

– Storing the buffer offset allows this to work

struct Node {

 int value;

 Pointer<Node> next;

};

Pointer<Node> createNode(int x) {

 Pointer<Node> result = malloc<Node>(1);

 result->value = x;

 result->next = Pointer<Node>();

 return result;

}

Specialized allocator used

38 | OpenCL C++ | March 16, 2013

ACCESS/EXECUTE DESCRIPTORS

Pointers are often a limitation to parallelism

– Aliasing can be hard to prove

– Analysing bounds of pointer accesses can be impossible

– Computing data movement in advance is infeasible in the general case

 In loop nest, not in generated kernel

– The loop nest may carry dependencies if we can analyse it

– The generated kernel may have lost this inter-iteration information

Various techniques partially address this

– restrict

– Parallelism guarantees such as the basic implicit vector parallelism provided by OpenCL kernels

– Automated data movement may still be infeasible or unsafe

39 | OpenCL C++ | March 16, 2013

ACCESS/EXECUTE DESCRIPTORS

The decoupled access/execute model attempts to alleviate this

– Separate the execution domain from its memory accesses

– Declaratively specify as much as possible of the memory access patter to enable stronger

optimisations

We might, for example, specify two extended pointers and their metadata:

typedef cl::Pointer<int,

 cl::Access::Mapping<

 cl::Access::Project<100, 100>,

 cl::Access::Region<3, 3, cl::Access::Clamp>>

 AEcutePointerIN;

typedef cl::Pointer<float,

 cl::Access::Mapping<

 cl::Access::Project<100, 100>>

 AEcutePointerOUT;

40 | OpenCL C++ | March 16, 2013

ACCESS/EXECUTE DESCRIPTORS

The decoupled access/execute model attempts to alleviate this

– Separate the execution domain from its memory accesses

– Declaratively specify as much as possible of the memory access patter to enable stronger

optimisations

We might, for example, specify two extended pointers and their metadata:

typedef cl::Pointer<int,

 cl::Access::Mapping<

 cl::Access::Project<100, 100>,

 cl::Access::Region<3, 3, cl::Access::Clamp>>

 AEcutePointerIN;

typedef cl::Pointer<float,

 cl::Access::Mapping<

 cl::Access::Project<100, 100>>

 AEcutePointerOUT;

Projection into 2D space Projection into 2D space

41 | OpenCL C++ | March 16, 2013

ACCESS/EXECUTE DESCRIPTORS

The decoupled access/execute model attempts to alleviate this

– Separate the execution domain from its memory accesses

– Declaratively specify as much as possible of the memory access patter to enable stronger

optimisations

We might, for example, specify two extended pointers and their metadata:

typedef cl::Pointer<int,

 cl::Access::Mapping<

 cl::Access::Project<100, 100>,

 cl::Access::Region<3, 3, cl::Access::Clamp>>

 AEcutePointerIN;

typedef cl::Pointer<float,

 cl::Access::Mapping<

 cl::Access::Project<100, 100>>

 AEcutePointerOUT;

Memory access is a 3x3 region

around the projected centre.

42 | OpenCL C++ | March 16, 2013

ÆCUTE DESCRIPTORS

We then use the pointers in a kernel:

kernel void plus(global const AEcutePointerIN in, global AEcutePointerOUT out) {

 int2 wid = (int2)(get_global_id(0), get_global_id(1));

 float sum = 0.f;

 for(int i = 0; i < 3; ++i) {

 for(int j = 0; j < 3; ++j) {

 sum += (float)in(j, i);

 }

 }

 out = sum / 9.f;

};

i and j directly iterate over the

region, not the input addresses.

The region may have been

copied locally with no update to

the addressing necessary

43 | OpenCL C++ | March 16, 2013

SOME ANALYSIS

DID WE MAKE THINGS GO SLOWLY

AND WHAT DID WE GAIN?

44 | OpenCL C++ | March 16, 2013

PERFORMANCE

C++ commonly is thought to have a performance overhead

 It isn’t the only myth out there, but it’s the relevant one for today

45 | OpenCL C++ | March 16, 2013

PERFORMANCE

C++ commonly is thought to have a performance overhead

 It isn’t the only myth out there, but it’s the relevant one for today

Performance measurements on the host code showed no difference from OpenCL™ C API

– Not a bad thing!

– Productivity, not performance enhancement

Performance measurements on the device code show no difference from OpenCL C code

– Not unexpected

– Static C++ is essentially zero overhead

46 | OpenCL C++ | March 16, 2013

CODE SIZE REDUCTION

Sometimes substantial reduction in code size:

Application C lines C++ lines Reduction

Vector addition 268 140 47.7%

Pi computation 306 166 45.8%

Ocean simulation 1386 533 61.5%

Particle simulation 733 601 18.0%

Radix sort 627 593 5.4%

47 | OpenCL C++ | March 16, 2013

CONCLUSION

OpenCL™ C++

– Productivity abstraction over OpenCL’s C interfaces

– Abstracts both host and device components

Available today:

– Downloadable header from www.khronos.org (supports OpenCL 1.2)

– Header and OpenCL C++ kernel language support in AMD APP SDK 2.7

 http://developer.amd.com

48 | OpenCL C++ | March 16, 2013

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions

and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY

DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL

OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF

EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. OpenCL is a trademark of

Apple Inc. used with permission by Khronos. All other names used in this presentation are for informational purposes only and

may be trademarks of their respective owners.

© 2013 Advanced Micro Devices, Inc.

